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Abstract

This paper discusses modelling of floating-slab tracks on rigid foundations. The model consists of an upper

Euler–Bernoulli beam to account for both the rails and a lower Euler–Bernoulli beam to account for the slab. There are

two continuous resilient layers in the model: one to account for railpads between the rails and the slab and one to account

for slab-bearings underneath the slab. The Fourier transformation method is used to calculate displacements of such a

track under an oscillating moving load. These results are used to calculate the cut-on frequencies and critical velocity of the

track. The work in this paper also demonstrates some basic concepts in the context of vibration of infinite systems

including dispersion curves, critical velocities, load-velocity lines and coupling of systems in the wavenumber-frequency

domain. The paper offers a complete treatment of the issues important to the analysis of a double-beam system not

elsewhere available in the published literature.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Floating-slab tracks are widely used to control vibration from underground trains [1–4]. The track is
mounted on a concrete slab that rests on rubber bearings, glass fibre, or steel springs. The slab may be cast in
situ, resulting in a continuous length of concrete, or may be constructed in discrete pre-cast sections laid end to
end. Examples of floating-slab tracks are, among others, the 1.5m slab in Toronto, the 3.4m Eisenmann track
in Munich and Frankfurt, the 7m slab in New York subway and the WMATA continuous slab system in
Washington DC.

This paper addresses modelling of floating-slab tracks with continuous slabs. The principal components
relevant to vibration modelling are the rails, the railpads, the floating slab and the slab bearings. The track-bed
is modelled as a rigid foundation, as the stiffness of slab bearings is normally much smaller than the stiffness of
the track-bed. For a soft track-bed, however, the stiffness of the ground can be incorporated in the model by
considering the total stiffness resulting from the stiffness of slab bearings in series with the stiffness of the
track-bed. The rigid-bed models are useful as quick tools to investigate the wheel–track interaction and can be
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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used in sub-modelling, i.e. to calculate the ground-borne vibration by using the calculated forces at the track-
bed as an input to a different model which accounts for the tunnel and the ground.

There are many models presented in the literature for railway tracks on rigid foundation. One of the oldest
and most widely accepted models, sometimes known as a beam on elastic foundation, was first presented by
Winkler in 1867. The model consists of a single infinite beam supported on a foundation with constant
stiffness [5]. There are two formulations used to account for the beam’s behaviour: Euler–Bernoulli and
Timoshenko. The former accounts only for bending while the latter accounts also for shear deformations and
rotary inertia [6]. For a low frequency of excitation, where the propagating wave has a wavelength much
greater than the beam-cross-sectional dimensions, both formulations converge to the same solution. For a
high frequency of excitation, Timoshenko formulation is necessary for an accurate solution.

The steady-state vibration of an undamped beam on elastic foundation due to a non-oscillating moving load
is investigated by many authors [7–10]. The solution for the damped case is presented by Kenny [11] to
account for velocities above the critical velocity of the beam.

The work of Mathews [12,13] calculates the steady-state response of an Euler–Bernoulli beam on an elastic
foundation under an oscillating moving load. The Fourier transformation is used to calculate a closed form
solution for the response using contour integrals and the residue theorem. Analysis of the same problem but
using Timoshenko formulation can be found in Chonan [14]. Bogacz et al. [15] present a generalization of the
problem comparing results of the beam response calculated by the two formulations.

In the previous models, viscous damping is used whenever damping is introduced to the foundation.
However, structural damping may also be used [16] to account for energy losses. A detailed study of modelling
of infinite beams, and finite beams, under oscillating moving loads can be found in Ref. [17].

A more complicated problem in which the complete solution (transient and steady state) of a beam on
elastic foundation under an oscillating moving mass, is calculated by Duffy [18]. Fourier transformation is
used to transform the differential equation with respect to space, while Laplace transformation is used with
respect to time.

There are other less popular types of foundations used in the literature. Example is Pasternak foundation
which is a Winkler foundation with a shear layer coupled from the top [19]. A recent study by Mallik et al. [20]
shows that there are insignificant differences between the results of Winkler and Pasternak foundations for a
beam subjected to a static moving load.

The literature on modelling of double beams is extensive on finite lengths with only one layer of
resilient between the two beams. For example, Kessel [21] studies the eigenfrequencies of a simply supported
double-beam system under an oscillating moving load. The complete solution of a finite double beam is
calculated by Vu et al. [22]. Different formulations of a beam, such as Euler–Bernoulli and Timoshenko, are
used by Han et al. [23] to calculate the dynamics of a vibrating double beam with different set of boundary
conditions.

Chen and Shiu [24] used a method based on the dynamic stiffness matrices to account for an elevated
railway subjected to harmonic moving loads. Three different models are presented, two of them are relevant to
the literature presented here. One model is a double-beam system that is simply supported. Another is a
double-beam system connected from its sides by two semi-infinite beams on elastic foundations.

Cui and Chew [25] use the Laplace transformation method to model two different tracks in the Singapore
mass rapid transit (SMRT) system. Both tracks are analysed using infinitely long two-dimensional (2D)
models on rigid foundations. The first is a fixed track slab, modelled as a beam on elastic foundation. The
second is a floating-slab track with discontinuous slab modelled as a beam supported elastically on continuous
masses on elastic foundation.

Modelling of floating-slab tracks on rigid foundation under oscillating loads is presented by Forrest [4]. His
work considers only oscillating loads that are fixed in position with no attempt to account for moving loads. A
direct solution, presented in the appendix of this paper, based on separable functions in time and space is
followed to solve the differential equation for a track with a continuous slab. For a track with discontinuous
slabs, the repeating unit method is used which incorporates Floquet’s theorem to account for periodicity of the
track. One of the findings of the work [4,26] is that the ratio between the total transmitted force to the ground
and the input force is equal to the transmissibility calculated from a two-degree-of-freedom (2dof) system.
This finding holds for tracks with continuous and discontinuous slabs.
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In this paper, the work of Forrest on modelling of tracks with continuous slabs is extended to account for
moving loads. The analytical background is presented in Section 2 while the results and discussion are given in
Section 3. It may be useful for readers to go first through the appendix as it presents a complete demonstration
of some of the basic concepts that simplify understanding the contents of Sections 2 and 3.

2. Modelling of tracks with continuous slabs

In this section, analysis is carried out for a floating-slab track with continuous slab subjected to an oscillating
moving load with angular frequency $ and velocity v. The model is shown in Fig. 1. It consists of an upper
Euler–Bernoulli beam to account for both of the rails (with mass m1 per unit length and bending stiffness EI1) and
a lower Euler–Bernoulli beam to account for the floating slab (with mass m2 per unit length and bending stiffness
EI2). The model accounts for identical inputs on the two rails and hence a single beam is used to model both of
the rails. Railpads are represented by a continuous layer of springs with stiffness k1 per unit length and a viscous
damping factor c1 per unit length. Slab bearings are represented by a continuous layer of springs with stiffness k2
per unit length and a viscous damping factor c2 per unit length. The space–time coordinates are defined in a way
that the load passes by x ¼ 0 at time t ¼ 0. The solution methodology depends on transforming the differential
equations of the track to the wavenumber-frequency domain, where they are simplified and transformed back to
the space–time domain. The reader is referred to the appendix for a detailed description of the method.

The load on the upper beam in Fig. 1 can be written in the space–time domain as follows

F ðx; tÞ ¼ ei$tdðx� vtÞ, (1)

where d is the Dirac delta function, see Ref. [27] for example. The generalised differential equations of the
upper and the lower beams can be written as

EI1
q4y1

qx4
þm1

q2y1

qt2
þ k1 y1 � y2

� �
þ c1

qy1

qt
�

qy2

qt

� �
¼ ei$tdðx� vtÞ (2)

and

EI2
q4y2

qx4
þm2

q2y2

qt2
þ k2y2 � k1 y1 � y2

� �
þ c2

qy2

qt
� c1

qy1

qt
�

qy2

qt

� �
¼ 0. (3)

When solving problems of moving loads, some authors prefer at this stage to replace the fixed frame of axis,
i.e. (x, t), by the moving frame of axis, i.e. (z ¼ x� vt; t), see [17] for example. However, the derivation
without following this approach leads to the same results at the end and has the advantage of giving more
insight into defining the critical velocity which is discussed in Section 3. Eqs. (2) and (3) are transformed from
the space–time domain (x,t) to the wavenumber-frequency domain (x,o) using double Fourier transform, see
Ref. [28] for example. The transformed equations read

EI1x
4 ~y1 �m1o2 ~y1 þ k1 ~y1 � ~y2

� �
þ c1io ~y1 � ~y2

� �
¼ 2pdðoþ xv�$Þ, (4)

and

EI2x
4 ~y2 �m2o2 ~y2 þ k2 ~y2 � k1 ~y1 � ~y2

� �
þ c2io ~y2 � c1io ~y1 � ~y2

� �
¼ 0, (5)
Fig. 1. (a) Floating-slab track on a rigid foundation, subjected to a unit moving oscillating load and (b) side view.
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where ~y1 and ~y2 are the transformation of y1 and y2 in the wavenumber-frequency domain. Eqs. (4) and (5) can
be written in matrix form as

A
~y1

~y2

" #
¼

2pdðoþ xv�$Þ

0

� �
, (6)

where

A ¼
EI1x

4
�m1o2 þ k1 þ c1io �k1 � c1io

�k1 � c1io EI2x
4
�m2o2 þ k1 þ k2 þ io c1 þ c2ð Þ

" #
.

Solving for ~y1; ~y2 from Eq. (6)

~y1ðx;oÞ ¼
2pdðoþ xv�$Þf 2ðx;oÞ

f 1ðx;oÞ
(7)

and

~y2ðx;oÞ ¼
2pdðoþ xv�$Þf 3ðx;oÞ

f 1ðx;oÞ
, (8)

where f 1ðx;oÞ ¼ jAj, f 2ðx;oÞ ¼ EI2x
4
�m2o2 þ k1 þ k2 þ io c1 þ c2ð Þ, f 3ðx;oÞ ¼ k1 þ c1io and |A| is the

determinant of matrix A. Eqs. (7) and (8) are transformed to the wavenumber-time domain firstly, resulting in

ȳ1ðx; tÞ ¼
f 2ðx;o ¼ $� xvÞ

f 1ðx;o ¼ $� xvÞ
eið$�xvÞt (9)

and

ȳ2ðx; tÞ ¼
f 3ðx;o ¼ $� xvÞ

f 1ðx;o ¼ $� xvÞ
eið$�xvÞt. (10)

Transforming Eqs. (9) and (10) from the wavenumber-time domain to the space–time domain results in

y1ðx; tÞ ¼
ei$t

2p

Z 1
�1

f 2ðx;o ¼ $� xvÞ

f 1ðx;o ¼ $� xvÞ
eixðx�vtÞ dx (11)

and

y2ðx; tÞ ¼
ei$t

2p

Z 1
�1

f 3ðx;o ¼ $� xvÞ

f 1ðx;o ¼ $� xvÞ
eixðx�vtÞ dx: (12)

The previous integrations can be performed numerically along the real x-axis. Otherwise, this integration is
carried out analytically using the contour integrals, see the appendix for more details. f1(x,o) is a polynomial
of the eighth order and hence the integrated functions in Eqs. (11) and (12) have eight poles. All these poles are
complex values if any of c1 or c2 is not equal zero. The integrations in Eqs. (11) and (12) can be written as

y1ðx; tÞ ¼
iei$t

EI1EI2

X4
n¼1

eixnðx�vtÞf 2ðxn;o ¼ $� xnvÞQ
n

for x� vt40, (13)

y2ðx; tÞ ¼
iei$t

EI1EI2

X4
n¼1

eixnðx�vtÞf 3ðxn;o ¼ $� xnvÞQ
n

for x� vt40; (14)

y1ðx; tÞ ¼
�iei$t

EI1EI2

X8
n¼5

eixnðx�vtÞf 2ðxn;o ¼ $� xnvÞQ
n

for x� vto0, (15)
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and

y2ðx; tÞ ¼
�iei$t

EI1EI2

X8
n¼5

eixnðx�vtÞf 3 xn;o ¼ $� xnvð ÞQ
n

for x� vto0, (16)

where Y
n
¼ xn � x1ð Þ xn � x2ð Þ . . . xn � xn�1ð Þ xn � xnþ1

� �
. . . xn � x8ð Þ,

x1, x2,y, x8 are the roots of the equation f 1ðx;o ¼ $� xvÞ ¼ 0, x1, x2, x3, x4 are the roots in the first and the
second quadrants, and x5, x6, x7, x8 are the roots in the third and the fourth quadrants.

3. Results and discussions

The parameters used to analyse floating-slab tracks are given in Table 1. These parameters are identical to
the ones used by Forrest [4] except for the dampers. Smaller damping factors are used with damping ratios z of
5% which is a typical value for an isolation pad. The damping factors can be calculated from the damping
ratios from the following relationships:

c1 ¼ 2z1
ffiffiffiffiffiffiffiffiffiffiffi
k1m1

p
and c2 ¼ 2z2

ffiffiffiffiffiffiffiffiffiffiffi
k2m2

p
. (17)

The free-vibration equations of a floating-slab track are calculated from Eq. (6) by setting the force to
zero, i.e.

A~y ¼ A
~y1

~y2

" #
¼

0

0

� �
. (18)

The dispersion equation is calculated by the non-trivial solution of this equation, i.e. jAj ¼ 0 or f 1ðx;oÞ ¼ 0
as in Eq. (7) and (8) with c1 ¼ 0 and c2 ¼ 0 (compare with Eq. (A.21)). The vector ~y is the eigenvector
describing the mode shape and can be calculated as explained in the appendix. The dispersion curves are the
real solutions of the dispersion equation and usually plotted for only positive frequencies due to symmetry
about zero frequency. However, negative frequencies are important for calculation of critical velocities, which
will be discussed later in this section.

Fig. 2 shows the dispersion curves of the track. It has two positive cut-on frequencies. The first occurs at
18.75Hz, where waves start to propagate away from the excitation point. Note that cut-on frequencies of the
track are associated with zero wavenumbers, i.e. infinite wavelengths, and hence the track behaves as a 2D
structure. As the slab is much heavier than the rails, the value of the first cut-on frequency can also be
approximately calculated using the single-degree-of-freedom (1dof) system consisting of a mass equal to the
slab’s mass per unit length and a spring with stiffness equal to the slab-bearings’ stiffness per unit length,
i.e. f ¼ 1=ð2pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
, which results in a cut-on frequency of 19.02Hz. By calculating ~y in Eq. (18) at the first

cut-on frequency, the motion of the rails and the slab is observed to be in phase.
The second cut-on frequency occurs at 102.15Hz. At this cut-on frequency, waves propagate in which only

the rails vibrate, while the slab does not move. Again the value of the second cut-on frequency can be
approximately calculated using the 1dof system consisting of a mass equal to the rails’ mass per unit length
and a spring with stiffness equal to the railpads’ stiffness per unit length, i.e. f ¼ 1=ð2pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
, which results

in a cut-on frequency of 100.66Hz.
Table 1

Parameter values used for the floating-slab track

Rail Slab

EI1 ¼ 10� 106 Pam4 EI2 ¼ 1430� 106 Pam4

m1 ¼ 100 kgm�1 m2 ¼ 3500kgm�1

k1 ¼ 40� 106Nm�2 k2 ¼ 50� 106Nm�2

c1 ¼ 6.3� 103N sm�2 c2 ¼ 41.8� 103N sm�2
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shown for two velocities 50m s�1(- - - -) and 385m s�1 ( � � � � ).

0 20 40 60 80 100 120 140 160 180 200
 -100

 -80

 -60

 -40

-20

y 
m

ag
. [

dB
 r

e 
m

m
 k

N
 -1

]

0 20 40 60 80 100 120 140 160 180 200

 -100

0

100

y 
ph

as
e 

[d
eg

]

(b) 

(a) 

frequency [Hz] 

Fig. 3. Response of rails (______) and slab (- - - -) under a non-moving oscillating load: (a) displacement and (b) phase.
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The track displacements under a static moving load, i.e. $ ¼ 0, can be evaluated by performing the
integrations in Eqs. (11) and (12) numerically. Note that the integrated functions have infinite values at points
where the denominator f 1ðx;o ¼ �xvÞ ¼ 0 is equal to zero. The dispersion curves in Fig. 2 give the solutions
of the equation f 1ðx;oÞ ¼ 0 in absence of damping. At the velocity when the line o ¼ �xv becomes tangential
to the curve f 1ðx;oÞ ¼ 0, the displacement becomes infinite and this velocity is called the critical velocity.

In the absence of damping, the displacement tends to infinity as the velocity approaches the critical velocity.
If damping is included, the functions f2(x,o)/f1(x,o) and f3(x,o)/f1(x,o) will have peaks at the dispersion curves
with higher values at lower angular frequencies o. Hence, the track will have a finite peak at the critical
velocity and smaller displacements at higher velocities. Fig. 2 shows the line o ¼ �xv which is called the load-

velocity line, for two velocities; 50 and 385m s�1. The latter is the track’s critical load velocity.
Fig. 3(a and b) shows the track displacements and phases for a non-moving oscillating load. It can be seen

that peaks occur at cut-on frequencies. This is because the load line o ¼ $� xv (with v ¼ 0 in this case)
becomes tangential to one of the dispersion curves of the track in Fig. 2 at cut-on frequencies. The importance
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of propagating waves can be realised away from the excitation point. Fig. 4, shows the track responses at 40m
away from the excitation point. It can be seen that the response below 19Hz is small as it is dominated by
evanescent waves and leaky waves which decay dramatically with distance. Fig. 4b shows that at the range of
frequency between the two cut-on frequencies, both the rails and slab move in phase. Above the second cut-on
frequency, the picture is complicated as two propagating waves contribute to the track displacement as can be
seen from Fig. 2.

A different way of calculating the dispersion curves for a track under moving loads is by directly solving the
equation f 1ðx;o ¼ $� xvÞ ¼ 0. At a given excitation frequency $, this results in eight eigenvalues xn

(n ¼ 1,2,y,8). Due to the factor eixnðx�vtÞei$t in Eqs. (13)–(16), the value of xn determines the wave type,
whether propagating, leaky or evanescent, but in a moving frame of reference x�vt (see the appendix for more
details). At a given positive $, a positive real root xn represents a wave propagating to the right ahead of the
moving load. In absence of damping, the velocity v ¼ 0 gives the dispersion curves plotted before in Fig. 2.
Dispersion curves for v ¼ 0 are symmetrical about x ¼ 0. This means that waves that propagate to the left are
identical to those that propagate to the right. When considering damping in the calculations (provided by c1
and c2) for non-moving loads, all roots shift to new positions by rotating counter clockwise in the complex x
domain. Hence, positive real roots of xn gain small positive imaginary part and negative real roots of xn gain
small negative imaginary part. Thus propagating waves transform to leaky waves with small coefficients of
attenuation.

Fig. 5 shows the dispersion curves for v ¼ 300m s�1, where only positive frequencies are plotted. The
dispersion curves are no longer symmetrical about x ¼ 0. Compared with the non-moving load, the curves
have moved down and to the left. Cut-on frequencies are lower than before and wavenumbers are longer
ahead of the load than behind the load. This means that wavelengths are shorter in front of the load. At
frequencies just above the first cut-on, waves with longer wavelengths have negative phase velocities. However,
these waves still propagate away from the load as they have positive group velocities, see Ref. [29] for
more details.

By increasing the load velocity more and more, the lower dispersion curve heads toward the wavenumber
axis and touches it around 385m s�1 (the same critical velocity as calculated before from Fig. 2). At this
velocity, waves propagate from a constant moving load, i.e. a load with $ ¼ 0.

The critical load velocity can also be calculated by plotting the displacement of the rails as a function of the
load velocity as shown in Fig. 6. The critical load velocity from this figure occurs at about 380m s�1, i.e.
slightly smaller than the value calculated before and the difference is attributed to damping which is modelled
in the calculations of Fig. 6. This figure also shows that the velocity effect is negligible when modelling
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non-oscillating moving loads on floating-slab tracks. This is true up to 100m s�1, where no difference is
observed between the static solution and the moving load solution. For underground trains, 100m s�1 is much
higher than typical train velocities.

In the previous discussion, wave propagation is considered in a moving frame of reference. For a
propagating wave with angular frequency $ and wavenumber xn, the observation point oscillates with angular
frequency $ in a moving frame of reference. However, in a fixed frame of reference, it oscillates with angular
frequency $�xnv. This can be shown from the following relationship

ei$teixnðx�vtÞ ¼ ei $�xnvð Þteixnx. (19)

Hence, for a fixed frame of reference, the oscillation frequency on of the observation point can be written as

on ¼ $� xnv ¼ $ 1� xnv=$
� �

¼ $ 1� v=cn

� �
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or

f n ¼ f̄ 1� v=cn

� �
, (20)

where fn is the oscillation frequency for a fixed frame of reference, f̄ is the oscillation frequency for a moving
frame of reference, and cn is the phase velocity of the propagating wave. Eq. (20) is known physically as
Doppler effect, see Ref. [30] for example. cn can be positive or negative depending on the direction of
propagation.

It is worth at this point commenting on the effect of coupling a discrete model of a train to a floating-slab
track with a smooth rail-head. A simple model of a moving train is obtained by considering an axle moving
over the track with constant velocity v. From Eq. (13–16), the displacements y1, y2 in a moving frame of axis
(z ¼ x� vt) under a moving load are invariant with time for $ ¼ 0. This can be shown by substituting
x� vt ¼ c, where c is a constant. Therefore, for a non-oscillating moving load with a constant velocity, an
observer who is moving along the rail with velocity equal to the load velocity keeps seeing the same deflected
shapes of the rail and the slab. As a linear model, the steady-state deflection of the rail under a constant moving
load increases proportionally to any increase in the magnitude of the load. Hence, for a moving axle on the
track, the deflection of the rail at any point can be calculated by multiplying the deflection calculated for a unit
load by the axle weight, i.e. �Mg, where M is the total axle mass and g is the gravity acceleration. Note that the
axle inertia has an effect only on the transient displacement, i.e. when the axle starts to move. After some time,
the transient effect disappears due to damping and only the steady-state effect remains. In reality, other loading
mechanisms contribute to the axle–track interaction, which are not considered here. These are caused for
instance by rail and wheel unevenness or roughness, rail joints, wheel flats and sleeper spacing.

4. Conclusions

Floating-slab tracks with continuous slabs are modelled in this paper. The track displacements under oscillating
moving loads are calculated using the Fourier transformation method. Analysis of the dispersion curves is carried
out to identify the track resonance frequencies. The critical load velocity is identified using a direct solution of the
dispersion equation or by using the load-velocity line and the dispersion curves. For a track with no irregularities,
such as roughness and rail joints, it is shown that no dynamic forces are induced at the wheel–track interface for a
vehicle moving with a constant velocity. Moreover, no difference is observed between the static solution and the
moving load solution for typical parameters of a track in underground tunnel.

Appendix A. Wavenumber-frequency domain analysis

The purpose of this appendix is to demonstrate some basic concepts about wave propagation and coupling
of structures in the wavenumber-frequency domain. This is done by analysing the same model of the railway
track used before but under a non-moving oscillating load. Three methods are presented in this appendix: the
direct method, the Fourier transformation method and the coupling in the wavenumber-frequency domain
method.

A.1. The direct method

This method treats the input force as a boundary condition for the problem. The model is shown in Fig. 7
with a concentrated harmonic load applied at x ¼ 0. The model is split into two semi-infinite structures (left
and right of x ¼ 0). The input force is described for the right semi-infinite structure as a boundary condition
on its left end. For the left semi-infinite structure the input force is described as a boundary condition on its
right end. In this way, no forces are applied along the structures apart from at their ends. Due to symmetry, it
is enough to analyse only the right semi-infinite structure.

For the element of length dx at distance x from the origin as shown in Fig. 7a, equations of motion read

EI1
q4y1

qx4
þm1

q2y1

qt2
¼ �k1 y1 � y2

� �
(A.1)
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Fig. 7. A floating-slab track subjected to a harmonic load at x ¼ 0: (a) front view and (b) side view at x ¼ 0.
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and

EI2
q4y2

qx4
þm2

q2y2

qt2
¼ k1 y1 � y2

� �
� k2y2, (A.2)

where EI1 is the bending stiffness of both of the rails, EI2 is the bending stiffness of the floating slab, k1 is the
stiffness of the railpads per unit length, k2 is the stiffness of the slab bearings per unit length, m1 is mass of the
rails per unit length, m2 is the mass of the floating slab per unit length, y1 is the upper beam displacement, i.e.
the rails displacement, and y2 is the lower beam displacement, i.e. the slab displacement. Eqs. (A.1) and (A.2)
can be written in matrix form as

EI1 0

0 EI2

" #
q4y

qx4
þ

m1 0

0 m2

" #
q2y
qt2
þ

k1 �k1

�k1 k1 þ k2

" #
y ¼

0

0

� �
(A.3)

where y ¼ y1; y2

� 	T
.

The following wave form solution is assumed for y

y ¼
y1

y2

" #
¼

Y 1

Y 2

" #
eiðotþxxÞ ¼ YeiðotþxxÞ. (A.4)

Note that in the theory of differential equations, solution (A.4) is known as a homogeneous solution of the
equations in Eq. (A.3). This also forms a general solution, as the particular solution is equal to zero (due to the
zero vector on the right-hand side of Eq. (A.3)).

Substituting y from Eq. (A.4) in Eq. (A.3) results in

EI1x
4
þ k1 �m1o2 �k1

�k1 EI2x
4
þ k1 þ k2 �m2o2

" #
Y ¼

0

0

� �
or AY ¼ 0. (A.5)

Eq. (A.5) has two possible solutions:
�
 a trivial solution, i.e. Y ¼ 0, where there are no displacements;

�
 a non-trivial solution, for this case jAj ¼ 0, i.e. the determinant of matrix A is equal to zero.
The determinant of matrix A, is a function of o, x and the track parameters: EI1, EI2, m1, m2, k1 and k2. The
equation jAj ¼ 0 is known as the Dispersion equation. For prescribed track parameters, it is a function of x and
o. It will be seen later that the angular frequency o must equal the excitation frequency $, see Fig. 7. For a
positive real value of o, there are three different wave-type solutions according to the value of x in Eq. (A.4):
1.
 propagating wave: this solution arises when x is a real quantity. Positive real x results in a wave propagating
to the left, while negative value results in a wave propagating to the right due to the factor ei(ot+xx) in
Eq. (A.4);
2.
 evanescent waves: this solution arises when x is an imaginary quantity. Positive imaginary x results in a
decaying solution with distance x, while negative imaginary x results in an increasing solution with x;
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3.
 leaky waves: this solution arises when x is a complex quantity. The solution is propagating (oscillating) but
with some decay/increase with distance. The sign of the real part of x determines the wave direction while
the sign of the imaginary part of x determines whether the solution decays or increases with distance.

For the current problem and for a given angular frequency o ¼ $, the dispersion equation is a polynomial
of the eighth order in x. The general displacements of the track can be written as

y ¼ a1E1e
ix1x þ a2E2e

ix2x þ � � � þ a8E8e
ix8x

� �
eiot. (A.6)

The eigenvector En (n ¼ 1, 2,y, 8) is calculated from the following relationship

En ¼ Dð2Þ, (A.7)

where D(2) is the second column of the 2� 2 matrix D which is calculated by

½S;V;D� ¼ svd Anð Þ, (A.8)

where the right-hand side is the singular value decomposition of matrix A evaluated at the solution (xn,o), see
Ref. [31] for more details.

In Fig. 8a, solutions of the dispersion equation are plotted at each frequency f ¼ o=ð2pÞ for the range of
frequency 0–100Hz, using the track parameters given in Table 1.

At low frequencies, it can be seen from Fig. 8a and b that there are no real solutions x and hence the track
displacements do not include propagating waves. For higher frequencies (see Fig. 8a and c) real solutions of x
appear. The frequency at which waves start to propagate is known as the cut-on frequency. This frequency is
18.75Hz for the current parameters.

The final step in this method is to find the coefficients a1,a2,y,a8 in Eq. (A.6) by using the boundary
conditions.

For the right semi-infinite structure, i.e. for x40, any coefficient an associated with solutions increasing with
x should be set to zero, as the displacement does not increase with distance away from the excitation point.
Moreover, purely propagating waves should travel only to the right due to absence of sources at x40, and
hence any coefficient associated with real positive x should be set to zero. This means for x40, only solutions
associated with x which lie in the first and the second quarter excluding the positive real axis are included in
the displacement, which is applicable on four roots (see Fig. 8). A similar argument can be used for the left
semi-infinite beams, where this time only roots which lie in the third and the forth quarter excluding the
negative real axis are included in the displacement.

The remaining four coefficients in Eq. (A.6) are determined by using the boundary conditions at x ¼ 0.
There are four boundary conditions at x ¼ 0 due to symmetry and are expressed mathematically in Eq. (A.9):
the slope is zero for the upper and the lower beams and the shear force is equal to half of the applied force
for the upper and the lower beam, i.e. F/2 and zero respectively. Note that the shear force condition at x ¼ 0
for the upper beam is only satisfied if o ¼ $.

qy1ðx ¼ 0; tÞ

qx
¼ 0, (A.9a)

qy2ðx ¼ 0; tÞ

qx
¼ 0, (A.9b)

EI1
q3y1ðx ¼ 0; tÞ

qx3
¼

F

2
, (A.9c)

and

EI2
q3y2ðx ¼ 0; tÞ

qx3
¼ 0. (A.9d)
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Fig. 8. (a) Roots of the dispersion equation of a floating-slab track on rigid foundation, where the real part and imaginary part of a
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frequency, where all solutions are complex quantities. (c) Cross-sectional view of (a) at frequency above the cut-on frequency, where four
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A.2. The Fourier transformation method

Unlike the direct method, this method treats the load as a part of the differential equation rather than a
boundary condition. In this method, the governing differential equations of the track are transformed to the
wavenumber-frequency domain (x,o). The transformed equations are then simplified and transformed back to
the space–time domain (x,t). For the model shown in Fig. 7, the governing differential equations (equivalent to
Eqs. (A.1 and A.2)) read

EI1
q4y1

qx4
þm1

q2y1

qt2
þ k1 y1 � y2

� �
¼ dðxÞei$t (A.10)

and

EI2
q4y2

qx4
þm2

q2y2

qt2
� k1 y1 � y2

� �
þ k2y2 ¼ 0. (A.11)
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Eqs. (A.10) and (A.11) are transformed to the wavenumber-frequency domain. The transformed equations
read

EI1x
4 ~y1 �m1o2 ~y1 þ k1 ~y1 � ~y2

� �
¼ 2pdðo�$Þ (A.12)

and

EI2x
4 ~y2 �m2o2 ~y2 � k1 ~y1 � ~y2

� �
þ k2 ~y2 ¼ 0. (A.13)

Eqs. (A.12) and (A.13) can be written in matrix form as

EI1x
4
þ k1 �m1o2 �k1

�k1 EI2x
4
þ k1 þ k2 �m2o2

" #
~y ¼

2pdðo�$Þ

0

� �
, (A.14)

where ~y ¼ ~y1; ~y2

� 	T
. Note that the matrix on the left-hand side is matrix A in Eq. (A.5). The inverse of matrix

A can be written as

A�1 ¼
1

Aj j

EI2x
4
þ k1 þ k2 �m2o2 k1

k1 EI1x
4
þ k1 �m1o2

" #
. (A.15)

Eq. (A.14) can be written as

~yðx;oÞ ¼
2pdðo�$Þ

Aj j

EI2x
4
þ k1 þ k2 �m2o2

k1

" #
. (A.16)

Transforming Eq. (A.16) firstly to the wavenumber-time domain results in

ȳðx; tÞ ¼
ei$t

Aj j@o¼$

EI2x
4
þ k1 þ k2 �m2$

2

k1

" #
. (A.17)

Now, Eq. (A.17) is transformed to the space–time domain

yðx; tÞ ¼
ei$t

2p

Z 1
�1

1

Aj j@o¼$

EI2x
4
þ k1 þ k2 �m2$

2

k1

" #
eixx dx. (A.18)

It is sufficient for the purpose of demonstration to solve for y1(x,t) as y2(x,t) can be found using the same
procedure. From Eq. (A.18), y1(x,t) can be written as

y1ðx; tÞ ¼
ei$t

2p

Z 1
�1

f ðxÞeixx dx; (A.19)

where f ðxÞ ¼ EI2x
4
þ k1 þ k2 �m2$

2
� �


Aj j@o¼$
� �� 	

. There are two methods for evaluating the integration
in Eq. (A.19). The first is by performing the integration directly on the real x-axis. This is difficult to undertake
analytically and hence it may be calculated numerically using the IDFT, i.e. the inverse discrete Fourier
transform. The other method is to use the results of contour integration from the theory of complex variables,
see Ref. [32] for example. As shown in Fig. 9, the integration of the function f(x)eixx along the real axis from
xa-�N to xb-N, is equivalent to the closed-path integration along the real axis from xa to xb plus the
integration along the semicircle from xb to xa, provided that the integration along the semicircle is zero. This
integration along this closed path is equal to the summation of residues evaluated at the poles of the function
f(x)eixx, i.e.

Z 1
�1

f ðxÞeixx dx ¼ 2pi
Xn¼N

n¼1

Res f ðxÞeixx; xn

� 	
; (A.20)
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where Res[f(x)eixx,xn] is the residue of f(x)eixx at the pole xn, N is the total number of poles enclosed by the
contour. The poles of f(x)eixx are the singular points of the function and can be calculated by equating the
denominator of f(x) to zero, i.e.

Aj j@o¼$ ¼ 0. (A.21)

The last equation is identical to the dispersion equation as calculated in the previous section (note in the
previous section that o ¼ $). As mentioned before, this equation has eight solutions at any angular frequency
o ¼ $ and they are plotted in Fig. 8.

The integration along the semicircle in Fig. 9 (substituting x ¼ Reiy) isZ
f ðxÞeixx dx ¼

Z y¼p

y¼0

EI2 Reiy
� �4

þ k1 þ k2 �m2o2

Aj j@o¼$
ðRieiyÞ eiðR cos yþiR sin yÞx� �

dy. (A.22)

The factor e�Rx sin y in the last integration determines whether the integration will approach infinity or zero
when R tends to infinity. In the first and the second quarter sin y40 and the integration only tends to zero for
positive values of x. Thus for x40, the closed integration in Fig. 9b is used. For xo0 a different contour is
used, in which the semicircle passes through the third and fourth quarter, see Fig. 9c. In this way, the
integration along the semicircle part always tends to zero when R tends to infinity.

Once the path is chosen, the integration along a closed contour is replaced by a summation of the residues at
the interior poles [32]. For the current problem if none of the poles lies on the real axis (Fig. 10), Eq. (A.19) can
be simplified to

y1ðx; tÞ ¼ 2pi
ei$t

2p

Xn¼4
n¼1

EI2x
4
n þ k1 þ k2 �m2$

2

EI1EI2
Q

n

� �
eixnx for xX0, (A.23a)
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and

y1ðx; tÞ ¼ �2pi
ei$t

2p

Xn¼8
n¼5

EI2x
4
n þ k1 þ k2 �m2$

2

EI1EI2
Q

j

 !
eixnx for xo0, (A.23b)

where Y
n
¼ xn � x1ð Þ xn � x2ð Þ . . . xn � xn�1ð Þ xn � xnþ1

� �
. . . xn � x8ð Þ,

x1, x2,y, x8 are the roots of dispersion equation at o ¼ $, x1, x2, x3, x4 are the roots in the first and the second
quadrants, and x5, x6, x7, x8 are the roots in the third and the fourth quadrants.

The additional minus sign in Eq. (A.23b) is to account for the clockwise direction of the contour around the
poles, see Fig. 9c.

For frequencies above the cut-on frequency some poles lie on the real axis and the integration path is
modified to include or exclude the pole using the same physical argument used in the previous section. Fig. 11
shows the appropriate contour for xX0 and xo0 for the case in Fig. 8c, i.e. for a frequency above the cut-on
frequency. For instance, in Fig. 11a the positive real value root is excluded by a small semicircle as it produces
a propagating wave to the left due to the factor (ei$teixx) in Eq. (A.23a).

Note that the displacement in Eqs. (A.23a) and (A.23b) comprises of the three wave-type solutions discussed
before, i.e. propagating, evanescent and leaky waves. It can be proved that this solution is identical to the one
calculated by the direct method in the previous section.

A.3. Coupling in the wavenumber-frequency domain

The method of coupling in the wavenumber-frequency domain is demonstrated in this section by analysing
the floating-slab track in Fig. 7. The model is split into two structures. The first structure is the upper beam as
shown in Fig. 12b, which accounts for the rails. The second structure is a beam on elastic foundation as shown
in Fig. 12c, which accounts for the floating slab and the slab bearings. These two structures are coupled via
railpads which are uniformly distributed longitudinally throughout the length.

An essential part of the analysis is to find the frequency response functions (FRFs) of the two structures
separately in the wavenumber-frequency domain.

The generalised differential equation for the first structure, i.e. a free Euler–Bernoulli beam is

EI1
q4z1
qx4
þm1

q2z1
qt2
¼ P1, (A.24)

where z1 is the vertical displacement of the free beam and P1 is the total force on the beam in the vertical
direction.

There are two methods for calculating the FRF of this structure:
1. Transforming the differential equation to the wavenumber-frequency domain directly using double

Fourier transform [28], which results in

EI1x
4 ~z1 �m1o2 ~z1 ¼ ~P1. (A.25)
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The displacement FRF of the free beam is defined as the vertical displacement of the free beam for a unit
vertical load in the wavenumber-frequency domain. Applying this definition on Eq. (A.25), results in

~H11 ¼
~z1
~P1

¼
1

EI1x
4
�m1o2

. (A.26)

2. By using the following expressions for the displacement and force

z1 ¼ ~z1e
iðxxþotÞ and P1 ¼ ~P1e

iðxxþotÞ. (A.27)

Substituting these expressions of z1 and P1 in Eq. (A.24), results in the displacement FRF of the free beam
as in Eq. (A.26).

To explain why the two methods lead to the FRF, consider the force in Eq. (A.25), i.e. ~P1. This force is in
the wavenumber-frequency domain and concentrated at specific wavenumber x and angular frequency o. It
can be expressed as a function in the wavenumber-frequency domain (x0,o0) as ~P1dðx0 � xÞdðo0 � oÞ, where
(x0,o0) are used in this context to express the wavenumber-frequency coordinates. Transforming this
expression to the space–time domain

1

ð2pÞ2

Z 1
o0¼�1

Z 1
x0¼�1

~P1d x0 � xð Þd o0 � oð Þei x0xþo0tð Þ dx0 do0

¼
1

ð2pÞ2
~P1e

iðxxþotÞ. ðA:28Þ

In the same way the transformation of the displacement in Eq. (A.25) to the space–time domain gives

1

ð2pÞ2

Z 1
o0¼�1

Z 1
x0¼�1

~z1d x0 � xð Þd o0 � oð Þei x0xþo0tð Þ dx0 do0

¼
1

ð2pÞ2
~z1e

iðxxþotÞ. ðA:29Þ

By multiplying the input and the output in Eqs. (A.28) and (A.29) by (2p)2, it can be seen that the FRF
calculated by the second method is equivalent to the one calculated by the first method.

For the second structure, i.e. a beam on elastic foundation, the generalised differential equation in the
space–time domain reads

EI2
q4z2
qx4
þm2

q2z2
qt2
þ k2z2 ¼ P2, (A.30)

where z2 is the vertical displacement of the beam and P2 is the applied force on the beam in the vertical
direction.

To calculate the FRF of this structure, substitute z2 ¼ ~z2eiðxxþotÞ and P2 ¼ ~P2e
iðxxþotÞ and rearrange to get

~H22 ¼
~z2
~P2

¼
1

EI2x
4
�m2o2 þ k2

, (A.31)

where ~H22 is the FRF of the beam on elastic foundation in Fig. 12c.
Fig. 12. Coupling of structures in the wavenumber-frequency domain: (a) the coupled structure; (b) the first structure: a free beam; (c) the

second structure: a beam on an elastic foundation; and (d) the railpads which connect the two structures.
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It is possible now to couple the two structures. For the vertical equilibrium of forces in the space–time
domain, one can write (see Fig. 12d)

G1 ¼ G2 ¼ G. (A.32)

This equation is transformed to the wavenumber-frequency domain by substituting G1 ¼ ~G1e
iðxxþotÞ, G2 ¼

~G2e
iðxxþotÞ and G ¼ ~GeiðxxþotÞ to give

~G1 ¼ ~G2 ¼ ~G. (A.33)

The rest of the analysis is carried out directly in the wavenumber-frequency. The equations of motion are
written for the two structures and the railpads as follows

~y1 ¼
~H11

~F � ~G
� �

, (A.34)

~y2 ¼
~H22

~G, (A.35)

and

~G ¼ k1 ~y1 � ~y2

� �
. (A.36)

Solving Eqs. (A.34), (A.35) and (A.36) for ~y1 results in

~y1 ¼
~H11 1þ k1

~H22

� �
~F

1þ k1
~H11 þ ~H22

� � . (A.37)

Substituting ~H11 and ~H22 from Eqs. (A.26) and (A.31) and for a unit harmonic load applied at x ¼ 0 with
angular frequency $, i.e. ~F ¼ 2pdðo�$Þ, the equation reduces to the value of ~y1 as calculated by Eq. (A.16).
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